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ABSTRACT 

 
Climate change is among the major constraints to cereal crop productivity in Ethiopia. This 
study analysed the wheat supply response to climate and non-climatic variables in Ethiopia. 
The study employed Autoregressive Distributed Lag (ARDL) model using annual data from 
1981 to 2018. The results revealed that all climatic variables have positive impact on wheat 
output in both the long-run and short-run. However, only the elasticity coefficients of CO2 are 
statistically significant in both long- and short-terms. The estimated elasticity for CO2 in zero 
order difference (current year) has positive and significant effect on wheat production. The 
estimated elasticity coefficients of all the non-climatic variables such as price of wheat, area 
under wheat, and fertilizer consumed are all positive and have significant impact on wheat 
output supply in the long-run. The result implies that wheat output is highly responsive to its 
own price, area under wheat, and fertilizer quantity used on wheat production in the long-run. 
On the other hand, the study result indicated that the elasticities of log wheat area in zero order, 
log price of wheat in first lag order, and log fertilizer quantity used in zero order have positive 
and highly significant effect on wheat production. This implies that wheat output is highly 
responsive to previous year’s price, land currently under wheat production and fertilizer 
consumed in current year.  
 
Keywords: Climate Change, Output Supply Response, Wheat Crop, ARDL Model, Ethiopia. 
 
1. INTRODUCTION 
 
Wheat is reckoned among the most important food crops in the world today. It should also be 
emphasized that wheat is a crop of significant nutritional and economic importance in Africa. 
Available statistics show that in 2017, 750 million metric tons were harvested from 220 million 
hectares. In sub-Sahara Africa (SSA), FAO (2017) submitted that a total of 7.5 million metric 
tons of wheat was produced on 2.9 million hectares of cultivated land areas in 2016. Moreover, 
based on the quantity of outputs, Ethiopia is among the major producers of wheat in Africa and 
the crop is considered as the fourth most important cereal crop in terms of both land areas 
cultivated and volume of production after teff, maize and sorghum (CSA, 2018).  
 
Available data show that wheat production in Ethiopia has grown significantly over the past 
two decades. This growth can be attributed to government extension programs and the different 
initiatives implemented to promote agricultural growth through positive enhancement in the  
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food supply channels. Production increased from around 10.72 million quintals in 2002/03 to 
46.43 million quintals in 2017/18: an average annual growth of 22.2 percent. Yield of wheat 
also followed the same trend, its yield consistently increased from the level of 10.75 
quintals/hectare in 2002/03 to 27.36 quintal /hectare during 2017/18. However, the increase in 
area cultivated under wheat crop during the same period is minimal, just 3.6 percent only (CSA, 
2018).  
 
In Ethiopia, climate change is one of the major problems confronting agricultural productivity 
and millions of farmers have historically suffered production losses resulting from periodic 
droughts (Benti and Abera, 2019; Beweket, 2009). These have often culminated into spatial 
food insecurity and famine that often requires some international interventions (Makombe, et 
al, 2007; Bekele, et al, 2017). Climate change affects agricultural productivity through a 
number of ways. These include unexpected changes in the pattern of rainfall, changes in the 
planting and harvesting periods, increase in annual temperature, changes in ground water levels 
and availability and evapo-transpiration (Pearce et al. 1996).  
 
It should therefore be emphasized that wheat productivity is significantly influenced by 
changes in some climatic parameters.  Generally, due to their anatomical and morphological 
compositions, changes in rainfall and other climatic variables affect cereal crop outputs. 
Specifically, productivity of wheat can be adversely affected by environmental stressors such 
as extremely high temperature, low soil water content and low intensity of sunlight, among 
others (Modarresi et al, 2010; Kajla et al., 2015).  
 
In Sub-Saharan Africa, climate change brings about some socioeconomic constraints in the 
form of high input cost, severe droughts and infestation by pest and crop diseases. These are 
stressors of significant agronomic importance and they will lead to reduction in wheat 
production in absence of adequate coping mechanisms (Tadesse et al, 2018). It should also be 
noted that variability in environmental variables across African countries is defined in terms of 
changes in moisture availability, cropping systems and temperature regimes (Gebrechorkos, et 
al. 2018). Estimated climate models show that the median temperature in Africa will increase 
between 3 and 4oC by the end of the 21st century. This is roughly 1.5 times higher than the 
global mean. Therefore, some African countries such as Ethiopia are vulnerable to the adverse 
impacts of climate change due to limitations in access to adaptive resources (Elias, 2016; Tesso, 
et al, 2012).  
 
There is paucity of empirical studies with national scope on the impact of climate change on 
wheat production in Ethiopia. In some previous studies, Bekele, et al (2017) analysed the effect 
of rainfall on wheat yield in Sinana Woreda area of Ethiopia. Yibrah et al (2018) analysed the 
effect of rainfall and temperature variability on wheat and barley production in Tigray region 
of Ethiopia.  Since existing studies have mainly focused on regions and local areas within 
Ethiopia, this study seeks to fill an important research gap. This was motivated by potential 
adverse impacts that climate change could have on wheat production.  
 
2. MATERIALS AND METHODS 
2.1 Data Type and Method of collection 
The study used time series data on wheat outputs, climatic variables and other agronomic input 
variables. Weather data for temperatures and precipitations were obtained for 1981-2018  
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period. These data were summarized from twelve Ethiopia’s weather stations that are based in 
major wheat growing belts. In addition, wheat output data were compiled from several 
publications including database of the Food and Agriculture Organization (FAO).   

 
2.2 Empirical Model Specification 
In this study, we used the Autoregressive Distributed Lag (ARDL) model which was proposed by 
Pesaran et al (2001).  This model is efficient in testing and estimating long-run relationships that are 
based on time series data (Hassler and Wolters, 2006).  It also provides some flexibility in analyzing 
economic variables of different orders of integration. The general form of the model given a lag length 
p variable Q and q lag for variable X is stated as follows: 
Qt = ɑ0 + ∑ β𝑝𝑝

𝑖𝑖=1 iQt-i + ∑ β𝑞𝑞
𝑖𝑖=0 iXt-i + Ut       (1) 

, i-tis the quantity of supplied crop output in year  i-t, Qtdenotes the quantity of crop supplied in year  tQ
coefficients of used  run-long, … are the i, β0and β i-tare denoted as X i-texplanatory variables in year 

c error term. The estimated model specified as:is the stochastit inputs, while U 
lnQt = β0 + β1lnPrWt + β2lnLat + β3lnIrrigAt + β4lnFertt + β5lnImSt + β6lnSSRt +  β7lnLSRt + 
β8lnMinTempt + β9lnMaxTempt + β10lnCO2t + εt      (2) 
 
where ln denotes natural logarithm, Qt denotes wheat outputs measured in tons; PrWt is price of wheat 
per ton output in Ethiopian Birr (ETB),, Lat is wheat land area, IrrigAt is irrigated wheat land area, Fertt 
is quantity of fertilizer consumed on wheat, ImSt is improved wheat seed, RFt is seasonal rainfalls 
(short- and long-season) measured in millimeters, Tempt is crop growing period mean temperatures 
(MinTemp and MaxTemp) measured in degrees Celsius, and CO2t is CO2 emission in time t measured 
in teragram.  εt is the stochastic error. The estimated ARDL model is specified as: 
lnQt = ɑ0 + ∑𝛼𝛼1lnQt-i + ∑𝛼𝛼2lnLat-i + ∑𝛼𝛼3lnPrWt-i + ∑𝛼𝛼4lnIrrigAt-i + ∑𝛼𝛼5lnFertt-i + ∑𝛼𝛼6lnImSt-i + 
∑𝛼𝛼7lnSSRt-i + ∑𝛼𝛼8lnLSRt-i + ∑𝛼𝛼9lnMinTempt-i + ∑𝛼𝛼10lnMaxTempt-i + ∑𝛼𝛼11lnCO2t-i + εt-I (3) 
If the variables are cointegrated, then there exists an error correction representation. The short-run 
coefficients were estimated by the following dynamics of ARDL error correction model (ECM): 
Qt = β0 + ∑𝛽𝛽 1∆lnQt-i + ∑𝛽𝛽 2∆lnLat-i + ∑𝛽𝛽 3∆lnPrWt-i + ∑𝛽𝛽 4∆lnIrrigAt-i + ∑𝛽𝛽 5∆lnFertt-i +     
∑𝛽𝛽 6∆lnImSt-i + ∑𝛽𝛽 7∆lnSSRt-i + ∑𝛽𝛽 8∆lnLSRt-i + ∑𝛽𝛽 9∆lnMinTempt-i + ∑𝛽𝛽 10∆lnMaxTempt-i + 
∑𝛽𝛽11∆lnCO2t-i +  ψiECT1-i  + ui                    (4) 
where ψi represents the speed of adjustment (ECM term) which measures the deviation of Qt from the 
long-run equilibrium level. The number of lags is always determined by the use of Akaike Information 
criterion (AIC), Schwarz Information Criterion (SIC), and Hannan-Quinn Information Criterion (HQ). 
The ARDL model that was specified as equation 4 was estimated with Eviews 9 software.  
 
We tested the series for stationarity or unit root and cointegration. Augmented Dickey-Fuller (ADF) 
test (Dickey and Fuller, 1979) and Phillips-Perron (PP) test (Phillips and Perron, 1988) were used to 
test for presence of unit roots. The presence of cointegration was confirmed before estimating the model. 
Cointegration implies presence of long run relationship. Detection of cointegration with at least two 
I(1) series implies that some  I(0) variables could also be added in the ARDL model without altering 
the characteristics of the error term (Hill et al., 2012). 
 
3. RESULTS AND DISCUSSION 
3.1 Unit Root Test 
Table 1 shows the results of stationarity tests on the time series data using ADF and PP approaches. 
The results imply that log fertilizer, log mean temperature, log belg and meher rainfall, log wheat output, 
log improved seed, mean rain in wheat growing areas and mean minimum and maximum temperature 
were stationary at levels – I(0). However, log wheat output; log price of wheat; log area under wheat; 
log fertilizer used in wheat production; log wheat yield; log area under wheat; log improved wheat seed; 
log fertilizer used in wheat production; log irrigated area under wheat; crop season mean minimum  
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and maximum temperature in wheat growing areas were stationary at first difference – I(1). This shows 
that a  mixture of I(0) and I(1) variables were used (Ssekuma, 2011).  

 
In situations where time series data exhibit mixture of I(0) and I(1), some researchers recommend 
ARDL or Cobb-Douglas modeling as best approach (Sharma and Singh, 2019 and Dushko et al, 2011). 
In order to use the ARDL approach, bounds test of integration, model stability test and variance error 
correction model (VECM) should be conducted to test presence of long-term cointegration (Sharma and 
Singh, 2019).  
 
Table 1: Time Series Unit Root Test Results for Wheat Output and Related Independent 
Variables 

Variables Type of Test Form of Test P-Value Conclusion 
LNWO  ADF Intercept 0.9922 Non Stationary 
  Trend & intercept 0.4064 Stationary (I(0)) 
  First difference  0.0000 Stationary (I(1)) 
 PP Intercept 0.8896 Non stationary 
LNARW  ADF Intercept 0.8421 Non Stationary 
  Trend & intercept 0.0836 Non Stationary  
  First difference 0.0000 Stationary (I(1)) 
 PP Intercept 0.9337 Non stationary 
LNIMS  ADF Intercept 0.9829 Non Stationary 
  Trend & intercept 0.0005 Stationary (I(0)) 
  First difference 0.0002 Stationary (I(1)) 
 PP Intercept 0.3142 Stationary (I(0)) 
LNFERTW  ADF Intercept 0.8719 Non Stationary 
  Trend & intercept 0.0444 Stationary (I(0)) 
  First difference 0.0002 Stationary (I(1)) 
 PP Intercept  0.9824 Non Stationary 
LNIRRGAW  ADF Intercept 0.6757 Non Stationary 
  Trend & intercept 0.1225 Non Stationary 
  First difference  0.0000 Stationary (I(1)) 
 PP Intercept 0.3013 Non Stationary 
MEANRAIN  ADF Intercept 0.0000 Stationary (I(0)) 
  Trend & intercept 0.0000 Stationary (I(0)) 
 PP Intercept 0.0000 Stationary (I(0)) 
MINTEMP  ADF Intercept 0.0847 Non Stationary 
  Trend & intercept 0.0040 Stationary (I(0)) 
  First difference  0.0000 Stationary (I(1)) 
 PP Intercept 0.0847 Non Stationary 
MAXTEMP  ADF Intercept  0.6878 Non Stationary 
  Trend & intercept  0.0358 Stationary (I(0)) 
  First difference 0.0000 Stationary (I(1)) 
 PP Intercept 0.0840 Non Stationary 

   
3.2 Bound Testing Approach to Cointegration 
We used the Bound test in order to detect existence of long-run relationship (cointegration) 
among the variables. This test begins with estimation of a regression equation with log of wheat  
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output as dependent variable. Thereafter the predicted error terms for the model is to be tested 
for stationarity. The results, which are presented in Table 2, show that there is presence of 
cointegration and the null hypothesis of unit root was rejected (p<0.05). There is therefore 
presence of  long-run relationship among the variables. 
 

Table 2: Result of Cointegrating Test for wheat output data series 
Type of Test Test Statistic Critical Values Conclusion 

Wald Test  -5.3689** 4.130 Long-run Cointegration 
exists  

** Significant at 5 % level 
 

3.3 Diagnostic and Stability Tests 
We also tested the residual component of the ARDL model for normality, serial correlation and 
heteroscedasticity. The results in Table 3 show that the Jarque Bera statistic confirms that the 
series is normally distributed. Also, there was no evidence of autocorrelation based on Breush-
Godfrey Lagrange Multiplier (LM) test. There was no heteroscedasticity based on conclusion 
from LM test for no autoregressive conditional heteroscedasticity (ARCH). 
 
Table 3: Residual Properties of Wheat Output Response Equation 

Type of test Test statistic Test statistic value Probability 
Normality test-histogram  Jarque Berra  0.23650 0.8885 
Breusch-Godfrey Serial Correlation 
LM Test  

Obs*R-squared  0.55634 
 

0.7572 

Heteroskedasticity Test: ARCH  Obs*R-squared  2.62662 
 

0.1051 

The Ramsey RESET test was also used to detect presence of model misspecification.  The 
results in Table 4 show that there is no specification error in the model. Robustness of estimated 
parameters was tested with recursive coefficient tests, CUSUM tests, CUSUM residual squares 
test, one step forecast test and N steep forecast tests were performed. The results in Figure 1 
show non-significant divergence of the lines from zero line and the residual line is within the 
width of the standard error. This suggests robustness of the estimated parameters. 

 
Table 4: Ramsey Reset Tests Results 

Dependant variable F statistic Probability Conclusion 
Log of wheat output  0.425344 

 
0.6582 No indication of misspecification 

error  
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Figure 1: Recursive Residuals from the Wheat Output Response Equation 



         PONTE 
Vol. 77 No. 2, 2021        Florence, Italy 
ISSN: 0032-423X           E-ISSN:0032-6356     International Journal of Sciences and Research 

50 

 
3.4 Impact of Climate and Non-Climatic Variables on Wheat Output Supply Response  
To determine the response of wheat output supply to climatic (rainfall, temperature, CO2) and 
non-climatic (area under wheat, fertilizer and improved seed quantity used, and price of wheat 
output) variables, an ARDL model was estimated and tested for fitness. Following existence 
of long-run cointegration, an ARDL approach with lag length of (1, 1, 0, 0, 0, 0.0.0) model 
was used to estimate long-run elasticities of wheat output supply with respect to climatic and 
non-climatic variables. The estimated ARDL regression model for supply response of wheat 
output yielded the best fit to the data series with high values for adjusted R squared (0.977). 
This implies that 97.7 percent of the variations in wheat output are explained by climatic and 
non-climatic variables that were included in the model. The Durban-Watson on the other hand 
showed no evidence of serial autocorrelation. 
 
The estimated long-run elasticities of wheat with respect to climatic and socioeconomic 
variables is presented in Table 5. The estimated elasticity coefficients show that all climatic 
variables showed positive relationship with wheat output in the long-run. However, only log 
CO2 is statistically significant. The result implies that a 1% rise in the concentration of CO2 
results in an increase of wheat output by 0.58% in the long-run. This study is contrary to the 
findings of Janjua et al (2014), who found that the estimated elasticity coefficient for CO2 is 
positive, but statistically insignificant in the long-run.  
 
Similarly, the estimated elasticity coefficients of all the non-climatic variables are positive and 
have significant impact on wheat output supply in the long-run. The result indicates that a 1% 
increase in producer price of wheat, area covered under wheat crop, and fertilizer used in wheat 
production system would increase wheat output by 0.17%, 0.52% and 0.19% respectively. This 
implies that wheat output is highly responsive to its own price, area under wheat, and fertilizer 
quantity used on wheat production in the long-run. Fertilizers have dual effect in this case. First 
they enhance the land fertility and second they increase the growth of plants. Fertilizers, in the 
long-run would increase land fertility, leading to increased agricultural production. Wheat 
farmers use natural as well as chemical fertilizers to increase the fertility of their land. Hence, 
for wheat crop, fertilizers play an important role in increasing production. The results are 
consistent with those of Chandio et al (2019) who found that all non-climatic explanatory 
variables positively and significantly affected wheat production in the long-run.  
 
In the long run, the impact of area under cultivation on wheat production is positive and highly 
significant. A one percent increase in area under wheat cultivation would boost wheat 
production by 0.78 percent. Likewise, the support price is positively and significantly 
associated with wheat production. It was found that a 1 percent increase in support price would 
cause 0.12 percent increase in wheat production. Similarly, wheat production would enhance 
by 0.19 percent due to a 1 percent increase in fertilizer consumption in the long-run.  
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Table 5: Estimated long-run elasticities of wheat output with respect to climatic and non 

climatic variables 
Variable Elasticity Std. Error T-Ratio P-value 

Constant -9.55289* 5.50035 -1.73678 0.0938 
lnPriWh 0.17070** 0.07593  2.24807  0.0329 
lnArWh 0.52473*** 0.16153 3.24847 0.0031 

lnFertWh 0.18901** 0.07968 2.37200  0.0251 
lnTemp 1.98947 1.26591  1.57157 0.1277 

lnRainbel 0.01749 0.09387 0.18628 0.8536 
lnRainmeh 0.09343 0.23313 0.40074  0.6918 

2lnCO 0.58011** 0.27751 2.09043  0.0461 
R-squared 0.982848     Mean dependent variable 2.68240 
Adjusted R-squared 0.977130     S.D. dependent variable 0.66353 
S.E. of regression 0.100344     Akaike info criterion -1.53497 
Sum squared resid 0.271858     Schwarz criterion -1.09959 
Log likelihood 38.39702     Hannan-Quinn criteria -1.38148 
F-statistic 171.9039     Durbin-Watson stat 2.18081 

*, ** and *** implies 10%, 5% and 1% significance level respectively. 
 Source: Authors Computation using Eviews 9. 
 
The short-run elasticities were also estimated using the ARDL Approach Dynamic Error 
Correction Term model and presented in Table 6. The short-run estimated coefficients indicate 
that the elasticities of log area under wheat cultivation in zero order, log price of wheat in first 
lag order, and log fertilizer quantity used in zero order have positive and highly significant 
effect on wheat production. The results indicate that a 1 percent increase in area under 
cultivation, lagged price of wheat, and fertilizer quantity used raises wheat production by 
0.45%, 0.18% and 0.16% respectively. This study result is analogous with the study findings 
of Chandio and Jiang (2019), who in their study on nexus between wheat support price and 
wheat production in Pakistan found that wheat incentive price, area under cultivation and 
fertilizer consumed have positive and highly significant effect on wheat production in the short-
run. The empirical findings indicate that a 1 percent increase in area under cultivation raises 
wheat production by 0.87 percent. Similarly, a 1 percent increase in support price of wheat 
boosts wheat production by 0.13 percent while a 1 percent increase in fertilizer consumption 
enhances wheat production by 0.21 percent. 
 
Further, the elasticities for all climatic variables showed positive relationship with wheat 
production in the short-run. However, the elasticities are statistically insignificant, except CO2. 
The estimated elasticity for CO2 in zero order difference has positive and significant effect on 
wheat production. The result indicates that a 1% rise in CO2 concentration increases wheat 
output by 0.5 percent in the short-run. This finding is consistent with the study result of Onour 
(2019) who found that using Sudan data, a change in CO2 has a positive and significant impact 
on cereal yield in Sudan in the short-terms. The result indicates that a 1% increase in carbon 
dioxide increases cereal yield by 3% in the short-term.  
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Table 6: Short-Run Elasticities for Wheat Dynamic ECT Model 

Variables Elasticities Std. Error t-Statistic Prob. 
C -8.23183* 4.76654 -1.72700 0.0956 
ECTt-1 -0.86171*** 0.16050 -5.36891 0.0000 
D(LNWHO(-1)) 0.13829 0.16050 0.86161 0.3965 
D(LNPRIWH) -0.03318 0.09214 -0.36008 0.7216 
D(LNPRIWH(-1)) 0.18027** 0.08515 2.117212 0.0436 
D(LNARWH) 0.45216*** 0.13643 3.314142 0.0026 
D(LNFERTWH) 0.16287** 0.08022 2.030173 0.0523 
D(LNTEMP) 1.714348 1.07260 1.598311 0.1216 
D(LNRAINBEL) 0.015068 0.08104 0.185939 0.8539 
D(LNRAINMEH) 0.080506 0.20140 0.399730 0.6925 
D(LNCO2) 0.499884* 0.28105 1.778625 0.0866 

 *, **, and *** implies significant at 10%, 5%, and 1% level. 
 Source: Authors’ Computation using Eviews 9 
 
4. CONCLUSION 
 
The objective of this study was to examine nationally aggregated supply response of wheat 
output to climate change in Ethiopia. Autoregressive Distributed Lag (ARDL) model was used 
in this study in order to check the impact of climate change on wheat production in Ethiopia. 
The study used time series data of the last 38 years. The results of estimated elasticity 
coefficients revealed that all climatic variables have positive impact on wheat output in the 
long-run, but only log CO2 is statistically significant. In the short-run, the elasticities for all 
climatic variables showed positive relationship with wheat production. However, the 
elasticities are statistically significant only for CO2. The estimated elasticity for CO2 in zero 
order difference (current year) has positive and significant effect on wheat production.  
 
The estimated elasticity coefficients of all the non climatic variables such as price of wheat, 
area under wheat, and fertilizer consumed are all positive and have significant impact on wheat 
output supply in the long-run. The result implies that wheat output is highly responsive to its 
own price, area under wheat, and fertilizer quantity used on wheat production in the long-run.  
The short-run estimated coefficients indicate that the elasticities of log area under wheat in zero 
order, log price of wheat in first lag order, and log fertilizer quantity used in zero order have 
positive and highly significant effect on wheat production. The study implies that wheat output 
is highly responsive to previous year’s price, land currently put under wheat production, and 
fertilizer consumed in current year.  
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